The best source of electronic components, design and logistics services

News

In our technology-driven world, the demand for power is unending. From the remote controls scattered around our living rooms to the emergency torches tucked away in drawers, batteries remain an essential part of our daily lives. And while the shift towards rechargeable batteries is noticeable, there's a stalwart player that continues to hold its ground for both its economic and sustainable stature ā€“ the alkaline battery.

In the age of rechargeable batteries and ever-increasing power demands, the humble alkaline battery might seem like a relic. But don't be fooled! Alkaline batteries are still a fantastic choice for many devices, offering a balance of affordability and long-lasting power that shouldn't be ignored.

Understanding the Basics: What are Alkaline Batteries and How Do They Work?

Alkaline batteries are a type of primary battery dependent on the reaction between zinc and manganese dioxide (Zn/MnO2). Characterised by their long shelf life and higher energy density, alkaline batteries have dominated portable devices since their mainstream adoption.

The chemistry behind alkaline batteries is fascinating and sets them apart from other battery types. When the battery is in use, the zinc (Zn) within the anode reacts with the manganese dioxide (MnO2) in the cathode, facilitated by an alkaline electrolyte, usually potassium hydroxide (KOH). This reaction releases energy, powering your devices. The alkaline solution used is key to the batteries' performance, offering a steadier energy output and longer life span compared to the acidic electrolytes found in older battery technologies.

Alkaline batteries first made their debut in the 1950s, introduced by the Eveready Battery Company (now known as Energizer). The innovation was aimed at providing consumers with a more durable and reliable power source for their everyday devices. Over the decades, improvements in the manufacturing process and materials have further enhanced their energy density and overall performance, cementing alkaline batteries' status as the go-to choice for a wide range of household items.

The Green Side of Alkaline: Environmental Impact and Sustainability

Contrary to popular belief, alkaline batteries have made strides towards environmental sustainability. Most modern alkaline batteries are mercury-free, reducing their environmental impact compared to older models. Plus, their long shelf life means fewer replacements, leading to less waste over time.

However, the path to sustainability doesn't end with the reduction of hazardous materials. Alkaline batteries still pose environmental challenges when disposed of improperly.

Recognising this, various recycling programs and initiatives have been established globally to tackle the issue. In the United States, for example, the Call2Recycle program offers a convenient way for consumers to recycle their used alkaline batteries responsibly. This not only helps in diverting potentially harmful materials from landfills but also recovers valuable metals that can be reused in manufacturing new products.

Here in New Zealand, recycling schemes have been gaining traction as part of the effort to mitigate the environmental impact of waste, including alkaline batteries. The Battery Industry Group (BIG) plays a pivotal role in this initiative, offering guidelines and support for battery recycling across the country. They collaborate with municipalities and private entities to increase accessibility to recycling programs, ensuring that consumers have convenient options for disposing of their alkaline batteries responsibly.

Notably, the Rechargeable Battery Recycling Corporation (RBRC) program in New Zealand has set up numerous drop-off locations nationwide, making it easier for New Zealanders to contribute to a more sustainable environment by recycling their used batteries. These efforts are crucial for reducing landfill waste and preventing the leakage of hazardous substances into ecosystems, aligning with New Zealand's broader environmental sustainability goals.

Additionally, some manufacturers, including Energizer, and retailers have taken it upon themselves to create take-back programs, encouraging users to return spent batteries for proper disposal or recycling, further reducing the environmental footprint of alkaline batteries. With these efforts, the aim is to foster a more circular economy where battery materials are efficiently recycled and reused, minimising waste and environmental impact.

The Economic Advantage: Why Alkaline Batteries Can Be a Budget-Friendly Choice

When it comes to powering your devices, initial cost and total value are key considerations. Alkaline batteries shine brightly in both aspects. They offer a compelling average cost per watt-hour and their performance in low-drain devices rivals that of many rechargeables, providing an attractive option for budget-conscious consumers who still seek quality and reliability.

Alkaline batteries not only present a cost-effective choice for consumers but also deliver dependable performance across a wide range of applications. They are the go-to power source for countless everyday devices, including remote controls, torches, and digital clocks, where their longevity in low-drain situations can be particularly advantageous. This durability, coupled with their affordability, means that for many households and businesses, alkaline batteries provide an excellent balance between quality and cost.

Furthermore, the ability of alkaline batteries to maintain their charge for extended periods when not in use makes them an ideal choice for emergency kits or infrequently used devices, ensuring that when the need arises, they're ready to perform. This blend of reliability, versatility, and value solidifies their status as a staple in the realm of battery-powered technology.

Real-World Applications: Where Alkaline Batteries Excel

Alkaline batteries are the unsung heroes for low-drain devices such as smoke detectors, remote controls, and clocks. Their ability to offer consistent power over extended periods makes them ideal candidates for emergency kits, where long-term reliability is non-negotiable. Plus, their universal availability ensures you're never caught powerless in a pinch.

Alkaline batteries come in a variety of sizes and capacities to meet the diverse demands of modern electronic devices. Each type is designed for specific applications, from small gadgets to larger, more power-intensive equipment:

  • AA: The most common size, ideal for everyday devices like remote controls, wireless mice, and small flashlights.
  • AAA: Smaller than AA, these are perfect for devices that require compact power sources such as TV remotes, portable speakers, and digital cameras.
  • C and D: Larger and designed for higher power needs, these are used in toys, boomboxes, and emergency equipment like flashlights and portable radios.
  • 9V: Often found in smoke detectors, carbon monoxide alarms, and professional audio equipment, providing reliable power for safety and performance.

Each of these types offers the reliability and longevity alkaline batteries are known for, ensuring that devices operate efficiently and effectively, regardless of their power requirements.

Tips for Maximising the Longevity of Alkaline Batteries

To get the most out of your alkaline batteries, store them in a cool, dry place to extend their shelf life. Also, be mindful to remove batteries from devices not in use for extended periods to prevent leakage and damage.

Additionally, consider pairing batteries of the same brand, capacity, and age to avoid imbalances that can lead to premature depletion. Regularly check the battery compartment of your devices for signs of corrosion or leakage, as this can affect performance and may cause damage.

Finally, investing in a good battery tester can help you distinguish between fully charged, partially used, and depleted batteries, ensuring you only replace what is necessary and potentially extending the overall life of your battery stock by preventing unnecessary waste.

It's important to note that while alkaline batteries boast an impressive shelf life, they are not rechargeable. Once depleted, they must be properly disposed of and replaced. This characteristic differentiates them from other types of batteries, such as NiMH or lithium-ion, which can be recharged and used multiple times. For devices that are used frequently, investing in rechargeable batteries may be a more economical and environmentally friendly option.

Conclusion: The Enduring Relevance of Alkaline Batteries in a Sustainable, Tech-Driven World

Despite the growing prominence of rechargeable alternatives, alkaline batteries maintain a significant role in our digital age. Their balance of affordability, performance, and sustainability ensures their continued relevance. For eco-conscious consumers, tech enthusiasts, and budget-savvy shoppers, alkaline batteries represent a practical solution that aligns with both their ethical values and economic considerations.

By understanding when and how to use these power sources effectively, consumers can enjoy long-lasting, sustainable power on a budget. Alkaline batteries, with their blend of efficiency and accessibility, affirm that sometimes, the classic choice remains a great choice.

Remember, the key to powering our devices smartly lies in making informed choices that consider the environment, our wallets, and our needs. Alkaline batteries, with their surprising array of benefits, offer just that. Shop Alkaline batteries at Ivent.

Lithium-ion batteries (LIBs) have long been the standard bearer in our rechargeable world, powering everything from smartphones to electric vehicles. However, there's a quieter, perhaps greener revolution underway in the form of Lithium Iron Phosphate (LiFePO4) batteries, often abbreviated to LFP. These batteries are gaining traction for their unique blend of safety, longevity, and environmental benefits, despite their relative obscurity in the mainstream narrative.

Most blog posts focus on LFP's safety advantages ā€“ its inherent stability makes it much less prone to fires compared to traditional LIBs. However, LFP boasts a range of under-discussed benefits that make it a compelling choice for specific applications.

Here at Ivent, we stock a wide range of LiFePO4 batteries including a super-powerful 12.8v 100Ah LFP Smart Battery which has a myriad of uses including security systems, home alarms, backup power, golf carts, mobility scooter, campervans and solar energy storage. You can check out our full range of LiFePO4 batteries and discover New Zealand's lowest prices for batteries.

Introduction to Lithium Iron Phosphate (LiFePO4) Batteries

At the heart of this technological evolution lies the LFP battery, a variant of the lithium-ion technology with distinct advantages over its more common counterparts. But what sets LiFePO4 apart, and why is it an important advancement in battery technology? Simply put, while traditional LIBs excel in energy density, LFP batteries offer superior safety, depth of discharge, durability through extended cycle life, and an exemplary environmental profile, making them a smart choice for a variety of applications.

Advantages of LiFePO4 Batteries

The benefits of LFP batteries extend far beyond their touted safety features. From longer lifespans to stellar performance under extreme conditions, here's why LiFePO4 technology is turning heads:

Longer Lifespan and Durability

A key advantage of LFP batteries is their exceptional lifecycle. Research demonstrates that LFP batteries can last up to four times longer than standard LIBs, with abilities to retain over 80% capacity after 2-3000 charge cycles while LIBs dropped below 60%. This durability translates into significant cost savings over time, particularly for devices requiring frequent power cycles like power tools (which can see thousands of cycles in their lifetime).

Enhanced Safety Features

Safety is arguably the hallmark of LFP technology. Its thermal stability greatly reduces the risk of catastrophic fires, a concern with traditional lithium-ion batteries. This safety profile enables faster charging without compromising the integrity of the battery, offering peace of mind for users and manufacturers alike. A research paper by Wang et al., 2019 compared the performance of LFP and LIB cells under high-rate charging conditions. The LFP cells exhibited significantly lower temperature rise, making them ideal for applications where rapid charging is crucial, such as electric buses or drones.

Superior Performance in Extreme Temperatures

LFP batteries outshine their lithium-ion cousins in harsh conditions. Their robust composition allows them to maintain performance in extreme temperatures, making them ideal for applications from electric vehicles (EVs) to solar energy storage systems, where temperature resilience is crucial.

Environmental Benefits and Sustainability

LFP batteries are composed of non-toxic and readily available materials, unlike some LIBs that contain cobalt, a metal often mined using unethical practices. Additionally, LFP batteries are easier to recycle due to their simpler chemical makeup. A report by The International Battery Recycling Association estimates that nearly 95% of LFP battery materials can be recovered, minimising environmental impact. Their recyclability further minimises their environmental footprint, promising a greener cycle of use and reuse.

Lower Cost (in the Long Run)

While the initial cost of LFP batteries can be slightly higher than LIBs, their extended lifespan and lower maintenance requirements often lead to significant cost savings over time. A lifecycle cost analysis by Li et al., 2020 found that LFP batteries offered a lower total cost of ownership compared to LIBs for applications with frequent charge cycles.

The Trade-Off: Energy Density

It's important to acknowledge that LFP batteries do have a lower energy density compared to some high-performance LIBs. This translates to less storage capacity in a similar-sized battery. However, advancements in LFP technology are continuously improving energy density, and for applications that prioritise safety, lifespan, and environmental benefits, LFP offers a compelling alternative.

Applications and Industries Utilising LiFePO4

From powering the next generation of EVs to revolutionising solar energy storage, LiFePO4 batteries are finding their place across numerous sectors:

  • Electric Vehicles: Offering a safer, more durable alternative for short to medium-range EVs.
  • Solar Energy Systems: Providing reliable, long-lasting storage solutions for green energy.
  • Portable Electronics and Tools: Improving safety and longevity in everyday devices and professional equipment.
  • Marine and Recreational Vehicles: Ensuring reliable power in environments where stability and safety are paramount.

Challenges and Future Developments

Though not without its challenges, notably in energy density when compared to some LIB variants, the ongoing advancements in LFP technology hint at a bright future. Continued research aims to elevate the energy density of LFPs while maintaining their core benefits, further solidifying their stance in the green technology arena.

From powering industrial equipment and grid storage to providing safe and reliable energy solutions for electric vehicles with shorter-range requirements, LFP technology offers a unique combination of safety, longevity, and environmental responsibility. While LFP may not be a one-size-fits-all solution, it deserves a closer look for applications where safety, durability, and long-term cost efficiency are paramount.

Conclusion

The pivot towards LiFePO4 technology signifies a broader shift in our approach to energy storage - one that values not just power and efficiency but also safety, durability, and environmental responsibility. For tech enthusiasts and green energy advocates, LFP batteries represent a significant stride towards sustainable technology solutions. Their growing applications across industries underscore a commitment to safer, longer-lasting, and more eco-friendly power sources.

Adopting LFP technology is more than a strategic choice; it's a step towards a sustainable future. Whether for personal devices, electric vehicles, or renewable energy storage, the advantages of LiFePO4 batteries are too compelling to overlook. As we continue to explore and expand their potential, the impact of LFP technology on our world promises to be both profound and positive.

Discover the power and promise of LFP for yourself, and join us at the forefront of the next wave in battery technology.


This month we take a look at some political moves by China's largest battery manufacturer CATL, spurred on by recent US legislation. There is also an interesting article around working out who you are actually dealing with in China... a manufacturer... or a trader? Plus of course the obligatory dig at the FART tax! šŸ’ØšŸ¤£

Big news this month is of course the weakness of our NZD, now affectionately known as the ā€œSouth Pacific Pesoā€, against the USD. This is having an immediate impact on the cost of landed goods, and will of course impact everyday goods such as appliances, vehicles, and electronics. Lithium pricing has again risen (not as sharply this time) but it is certainly heading in the wrong direction. EVā€™s are becoming more and more popular globally, but the Lithium mines simply cannot keep up with demandā€¦ It will be interesting to see where the market, and potentially government policy, goes regarding EVā€™s over the coming years.

An interesting look this month at global energy trends and how this links in with booming Chinese solar panel production levels. There is also some comment about a market ā€œcollapseā€ in memory products, being driven by massive global inventoriesā€¦ who would of seen that coming! Also, of course, a wee nod to our dearly departed Lizā€¦ šŸ˜”

Ivent reviews the ongoing issues at Ports of Auckland, along with the Chinese zero-COVID policy. A further look at Lithium rounds out a busy report!

Ivent is celebrating it's 15th anniversary this month (yes we will be buying ourselves some crystal glasses...). Hard to believe where all the years have gone... oh wait, that must be the reason for the grey hair and bald spots! This month we take a look at the Ukrainian tech sector (yes, there is one) and also a new COVID lockdown in China. We also keep our eye on the global component leadtime situation and the NZD vs USD exchange rate. Enjoy!

Happy Platinum Jubilee to Liz! Other than paying tribute to the British Royalty, we have a look at what the leadtimes are doing across a range of common components in our June report. Lithium prices have also eased, but is this the start of a steady decline in pricing, or just a brief pause before they head skywards again...? Check out our Market Report now for all of the answers (well at least some answers...!).

This month we take a look at the challenges Europe, and therefore the world, face to keep up with increasing lithium battery demands. EVā€™s are apparently the way of the future, but this is putting huge pressure on supply chains and causing exponential price increases. It is also very sobering to see lithium mines being built to keep up with this surging demandā€¦ instead of oil rigs we now have huge mines across the landscape!

In other news, COVID restrictions in China are finally easing meaning shipping is becoming very slightly easier. It is also very interesting to learn about the level of control being exerted to contain the virus as China continues with its elimination strategy.

A bit more doom and gloom to add into the global supply chain situation unfortunately. The zero-COVID policy in China is causing additional delays and creating a complex web of issues. This ultimately relates back to longer leadtimes, longer shipping times and increasing costsā€¦ as if we havenā€™t had enough of that in the last 12 months! There is also a quick update on the situation with the shipping lines into New Zealandā€¦ again not great news. In any case there are the usual memes to enjoy and the tech history section for a little bit of lighter content... Happy Days! šŸ™‚

Call us
Free Phone0800 40 14 14
Free Fax0800 40 14 15
Phone09 278 6430
Fax09 523 9774
Physical address
7H Echelon Place
East Tamaki 2013
Auckland
New Zealand
Postal address
PO Box 38807
Howick 2145
Auckland
New Zealand